Step of Proof: fast-fib |
11,40 |
|
Inference at * 1 2 1
Iof proof for Lemma fast-fib:
1. n :
2. 0 < n
3. a, b:.
3. {m:|
3. {k:.
3. {(a = fib(k)) ((k 0) (b = 0)) ((0 < k) (b = fib(k - 1))) (m = fib((n - 1)+k))}
4. a :
5. b :
6. b1:.
6. {m:|
6. {k:.
6. {(a+b = fib(k))
6. { ((k 0) (b1 = 0))
6. { ((0 < k) (b1 = fib(k - 1)))
6. { (m = fib((n - 1)+k))}
{m:|
{k:.
{(a = fib(k)) ((k 0) (b = 0)) ((0 < k) (b = fib(k - 1))) (m = fib(n+k))}
by InstHyp [a] (-1)
1: .....wf..... NILNIL
1: a
2:
2: 7. {m:|
2: 7. {k:.
2: 7. {(a+b = fib(k))
2: 7. { ((k 0) (a = 0))
2: 7. { ((0 < k) (a = fib(k - 1)))
2: 7. { (m = fib((n - 1)+k))}
2: {m:|
2: {k:.
2: {(a = fib(k)) ((k 0) (b = 0)) ((0 < k) (b = fib(k - 1))) (m = fib(n+k))}
.